212
Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3
In: Arthur, M. S., (ed.), ‘From Functional Genomics of Model Organisms to Crop Plants for
Global Health. Washington, DC: National Academy of Science.
Bhatnagar-Mathur, P., Devi, M. J., Serraj, R., Yamaguchi-Shinozaki, K., Vadez, V., & Sharma,
K. K., (2004). Evaluation of transgenic groundnut lines under water limited conditions. Int.
Arachis Newslett., 24, 33–34.
Bhatnagar-Mathur, P., Devi, M. J., Vadez, V., & Sharma, K. K., (2009). Differential antioxidative
responses in transgenic peanut bear no relationship to their superior transpiration efficiency
under drought stress. J. Plant Physiol., 166, 1207–1217.
Bhatnagar-Mathur, P., Rao, J. S., Vadez, V., Dumbala, S. R., Rathore, A., Yamaguchi-
Shinozaki, K., & Sharma, K. K., (2014). Transgenic peanut overexpressing the DREB1A
transcription factor has higher yields under drought stress. Mol. Breed., 33, 327–340.
Bi, H., Luang, S., Li, Y., Bazanova, N., Borisjuk, N., Hrmova, M., & Lopato, S., (2017).
Wheat drought-responsive WXPL transcription factors regulate cuticle biosynthesis genes.
Plant Mol. Biol., 94, 15–32.
Bi, H., Luang, S., Li, Y., Bazanova, N., Morran, S., Song, Z., Perera, M. A., et al, (2016).
Identification and characterization of wheat drought-responsive MYB transcription factors
involved in the regulation of cuticle biosynthesis. J. Exp. Bot., 67, 5363–5380.
Bihani, P., Char, B., & Bhargava, S., (2011). Transgenic expression of sorghum DREB2 in rice
improves tolerance and yield under water limitation. J. Agric. Sci., 149, 95–101.
Boch, J., (2011). TALEs of genome targeting. Nat. Biotechnol., 29, 135.
Bogdanove, A. J., & Voytas, D. F., (2011). TAL effectors: Customizable proteins for DNA
targeting. Science, 333, 1843–1846.
Bohnert, H. J., & Jensen, R. G., (1996). Strategies for engineering water stress tolerance in
plants. Trends Biotechnol., 14, 89–97.
Bortesi, L., & Fischer, R., (2015). The CRISPR/Cas9 system for plant genome editing and
beyond. Biotechnol. Adv., 33, 41–52.
Boston, R. S., Viitanen, P. V., & Vierling, E., (1996). Molecular chaperones and protein
folding in plants. Plant Mol. Biol., 32, 191–222.
Boudsocq, M., & Sheen, J., (2013). CDPKs in immune and stress signaling. Trends Plant
Sci., 18, 30–40.
Butt, H. I., Yang, Z., Chen, E., Zhao, G., Gong, Q., Yang, Z., Zhang, X., & Li, F., (2017a).
Functional characterization of cotton GaMYB62L, a novel R2R3 TF in transgenic
Arabidopsis. PLoS One, 12, e0170578.
Butt, H. I., Yang, Z., Gong, Q., Chen, E., Wang, X., Zhao, G., Ge, X., et al., (2017b).
GaMYB85, an R2R3 MYB gene, in transgenic Arabidopsis plays an important role in
drought tolerance. BMC Plant Biol., 17, 142.
Cabello, J. V., Lodeyro, A. F., & Zurbriggen, M. D., (2014). Novel perspectives for the
engineering of abiotic stress tolerance in plants. Curr. Opin. Biotechnol., 26, 62–70.
Cai, H., Tian, S., Dong, H., & Guo, C., (2015). Pleiotropic effects of TaMYB3R1 on plant
development and response to osmotic stress in transgenic Arabidopsis. Gene, 558, 227–234.
Cai, R., Dai, W., Zhang, C., Wang, Y., Wu, M., Zhao, Y., Ma, Q., et al., (2017). The maize
WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in
transgenic Arabidopsis plants. Planta, 246, 1215–1231.
Cai, W., Yang, Y., Wang, W., Guo, G., Liu, W., & Bi, C., (2018). Overexpression of a wheat
(Triticum aestivum L.) bZIP transcription factor gene, TabZIP6, decreased the freezing
tolerance of transgenic Arabidopsis seedlings by down-regulating the expression of CBFs.
Plant Physiol. Biochem., 124, 100–111.